Distinct intracellular Ca2+ dynamics regulate apical constriction and differentially contribute to neural tube closure
نویسندگان
چکیده
منابع مشابه
Distinct intracellular Ca2+ dynamics regulate apical constriction and differentially contribute to neural tube closure.
Early in the development of the central nervous system, progenitor cells undergo a shape change, called apical constriction, that triggers the neural plate to form a tubular structure. How apical constriction in the neural plate is controlled and how it contributes to tissue morphogenesis are not fully understood. In this study, we show that intracellular calcium ions (Ca2+) are required for Xe...
متن کاملLulu Regulates Shroom-Induced Apical Constriction during Neural Tube Closure
Apical constriction is an essential cell behavior during neural tube closure, but its underlying mechanisms are not fully understood. Lulu, or EPB4.1l5, is a FERM domain protein that has been implicated in apical constriction and actomyosin contractility in mouse embryos and cultured cells. Interference with the function of Lulu in Xenopus embryos by a specific antisense morpholino oligonucleot...
متن کاملRole of Rab11 in planar cell polarity and apical constriction during vertebrate neural tube closure
Epithelial folding is a critical process underlying many morphogenetic events including vertebrate neural tube closure, however, its spatial regulation is largely unknown. Here we show that during neural tube formation Rab11-positive recycling endosomes acquire bilaterally symmetric distribution in the Xenopus neural plate, being enriched at medial apical cell junctions. This mediolateral polar...
متن کاملShroom Induces Apical Constriction and Is Required for Hingepoint Formation during Neural Tube Closure
BACKGROUND The morphogenetic events of early vertebrate development generally involve the combined actions of several populations of cells, each engaged in a distinct behavior. Neural tube closure, for instance, involves apicobasal cell heightening, apical constriction at hingepoints, convergent extension of the midline, and pushing by the epidermis. Although a large number of genes are known t...
متن کاملGEF-H1 functions in apical constriction and cell intercalations and is essential for vertebrate neural tube closure.
Rho family GTPases regulate many morphogenetic processes during vertebrate development including neural tube closure. Here we report a function for GEF-H1/Lfc/ArhGEF2, a RhoA-specific guanine nucleotide exchange factor that functions in neurulation in Xenopus embryos. Morpholino-mediated depletion of GEF-H1 resulted in severe neural tube defects, which were rescued by GEF-H1 RNA. Lineage tracin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Development
سال: 2017
ISSN: 1477-9129,0950-1991
DOI: 10.1242/dev.141952